论文标题
机器人群的矩形网格上的空间和最佳的任意图案形成
Space and Move-optimal Arbitrary Pattern Formation on a Rectangular Grid by Robot Swarms
论文作者
论文摘要
任意模式形成(\ textsc {apf})是群体机器人技术中的一个充分研究的问题。据我们所知,在两个不同的环境中考虑了这个问题:一个在欧几里得平面中,另一个在无限的网格中。这项工作涉及无限矩形网格设置中的问题。在无限网格中涉及\ textsc {apf}问题的文献中的先前作品存在一个基本问题。这些确定性算法在网格中使用很多空间来解决问题,主要是为了维持配置的不对称性或避免碰撞。如果应用程序字段中存在空间约束,这些解决方案技术将无用。在这项工作中,我们考虑了发光的机器人(可以使用三种颜色的光)来避免对称性,但是我们仔细设计了一种确定性算法,该算法使用网格中的最小必需空间解决了\ textsc {apf}问题。这些机器人是自主,相同和匿名的,它们在完全异步的调度程序下以外观的移动周期运行。 Bose等人在\ cite {Bose2020}中提出的\ textsc {apf}算法。可以使用发光机器人修改,以便它使用最小空间,但是该算法不是最佳的。本文提出的算法不仅使用最小空间,而且渐近地移动。这项工作中提出的算法是为无限矩形网格而设计的,但也很容易修改以在有限的网格上使用。
Arbitrary pattern formation (\textsc{Apf}) is a well-studied problem in swarm robotics. To the best of our knowledge, the problem has been considered in two different settings: one in a euclidean plane and another in an infinite grid. This work deals with the problem in an infinite rectangular grid setting. The previous works in literature dealing with the \textsc{Apf} problem in an infinite grid had a fundamental issue. These deterministic algorithms use a lot of space in the grid to solve the problem, mainly to maintain the asymmetry of the configuration or to avoid a collision. These solution techniques cannot be useful if there is a space constraint in the application field. In this work, we consider luminous robots (with one light that can take three colors) to avoid symmetry, but we carefully designed a deterministic algorithm that solves the \textsc{Apf} problem using the minimal required space in the grid. The robots are autonomous, identical, and anonymous, and they operate in Look-Compute-Move cycles under a fully asynchronous scheduler. The \textsc{Apf} algorithm proposed in \cite{BOSE2020} by Bose et al. can be modified using luminous robots so that it uses minimal space, but that algorithm is not move-optimal. The algorithm proposed in this paper not only uses minimal space but is also asymptotically move-optimal. The algorithm proposed in this work is designed for an infinite rectangular grid, but it can be easily modified to work on a finite grid as well.