论文标题
具有控制器依赖性规范界限的非线性系统的稳健局部稳定:具有输入输出采样的凸方法
Robust Local Stabilization of Nonlinear Systems with Controller-Dependent Norm Bounds: A Convex Approach with Input-Output Sampling
论文作者
论文摘要
这封信提出了一个框架,用于为具有未知非线性的系统合成强大的全州反馈控制器。我们的方法使用与围绕平衡点的已知区域相对应的可用采样数据来表征非线性的投入输出行为。这种方法的挑战是,如果非线性对控制输入具有明确的依赖性,则需要对控制输入采样区域的先验选择来确定局部规范界限。这导致了一个“鸡和鸡蛋”问题,其中控制器合成需要局部规范界限,但是在控制器合成之前,无法表征需要表征的控制输入区域。为了解决此问题,我们在综合控制器的同时限制了采样区域内的闭环控制输入。由于所得的合成问题是非凸,因此通过主要问题的凸松弛获得了三个半明确程序(SDP),并使用这些SDP构建了迭代算法以进行控制合成。包括两个数值示例,以证明所提出的算法的有效性。
This letter presents a framework for synthesizing a robust full-state feedback controller for systems with unknown nonlinearities. Our approach characterizes input-output behavior of the nonlinearities in terms of local norm bounds using available sampled data corresponding to a known region about an equilibrium point. A challenge in this approach is that if the nonlinearities have explicit dependence on the control inputs, an a priori selection of the control input sampling region is required to determine the local norm bounds. This leads to a "chicken and egg" problem, where the local norm bounds are required for controller synthesis, but the region of control inputs needed to be characterized cannot be known prior to synthesis of the controller. To tackle this issue, we constrain the closed-loop control inputs within the sampling region while synthesizing the controller. As the resulting synthesis problem is non-convex, three semi-definite programs (SDPs) are obtained through convex relaxations of the main problem, and an iterative algorithm is constructed using these SDPs for control synthesis. Two numerical examples are included to demonstrate the effectiveness of the proposed algorithm.