论文标题

整个或合理的地图带有整数乘数

Entire or rational maps with integer multipliers

论文作者

Buff, Xavier, Gauthier, Thomas, Huguin, Valentin, Raissy, Jasmin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $\mathcal{O}_{K}$ be the ring of integers of an imaginary quadratic field $K$. Recently, Ji and Xie proved that every rational map $f \colon \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of degree $d \geq 2$ whose multipliers all lie in $\mathcal{O}_{K}$ is a power map, a Chebyshev map or a Lattès map. Their proof relies on a result from non-Archimedean dynamics obtained by Rivera-Letelier. In the present note, we show that one can avoid using this result by considering a differential equation instead. Our proof of Ji and Xie's result also applies to the case of entire maps. Thus, we also show that every nonaffine entire map $f \colon \mathbb{C} \rightarrow \mathbb{C}$ whose multipliers all lie in $\mathcal{O}_{K}$ is a power map or a Chebyshev map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源