论文标题
Wiener相位噪声通道的端到端优化通过可区分的盲相搜索
End-to-end Optimization of Constellation Shaping for Wiener Phase Noise Channels with a Differentiable Blind Phase Search
论文作者
论文摘要
随着连贯的光学通信系统中对更高数据吞吐量的需求增加,我们需要找到增加现有和未来光学通信链路容量的方法。为了满足对较高频谱效率的需求,我们将端到端优化应用于存在Wiener相位噪声和载体相估计的关节几何和概率星座。我们的方法遵循最新的位自动编码器,这些自动编码器需要对发射器和接收器之间的所有操作(包括DSP算法)之间的所有操作实现。在这项工作中,我们展示了如何修改普遍存在的盲相搜索(BPS)算法(一种流行的载体相位估计算法),以使其可区分并将其包括在端到端的星座形状中。通过利用关节几何和概率星座的形状,我们能够获得一种健壮且无试验的调制方案,与带有神经脱离器的正方形QAM星座相比,至少0.1bit/符号将64-ARY通信系统的性能提高了,与先前呈现的几何形式相比,仅使用几何形式的数字构造构造,并且使用了0.05位/符号。
As the demand for higher data throughput in coherent optical communication systems increases, we need to find ways to increase capacity in existing and future optical communication links. To address the demand for higher spectral efficiencies, we apply end-to-end optimization for joint geometric and probabilistic constellation shaping in the presence of Wiener phase noise and carrier phase estimation. Our approach follows state-of-the-art bitwise auto-encoders, which require a differentiable implementation of all operations between transmitter and receiver, including the DSP algorithms. In this work, we show how to modify the ubiquitous blind phase search (BPS) algorithm, a popular carrier phase estimation algorithm, to make it differentiable and include it in the end-to-end constellation shaping. By leveraging joint geometric and probabilistic constellation shaping, we are able to obtain a robust and pilot-free modulation scheme improving the performance of 64-ary communication systems by at least 0.1bit/symbol compared to square QAM constellations with neural demappers and by 0.05 bit/symbol compared to previously presented approaches applying only geometric constellation shaping.