论文标题
阶段2VEC:具有物理信息的卷积网络嵌入的动态系统
Phase2vec: Dynamical systems embedding with a physics-informed convolutional network
论文作者
论文摘要
动态系统以无数的物理和生物科学形式发现,但所有这些系统自然属于普遍的等效类别:保守或散发性,稳定或不稳定,不稳定,可压缩或不可压缩。从数据中预测这些类是计算物理学的基本开放挑战,在现有的时间序列分类方法中挣扎。在这里,我们建议,\ texttt {phase2vec},这是一种嵌入方法,它可以学习2D动态系统的高质量,身体上的表现,而无需监督。我们的嵌入是由卷积主链产生的,该主链从流数据中提取几何特征,并最大程度地减少物理知识的矢量场重建损失。在辅助训练期内,对嵌入式进行了优化,以便它们可靠地编码观点数据的方程,而不是每个方程式拟合方法的性能。受过训练的架构不仅可以预测看不见的数据的方程,而且至关重要的是,学习尊重嵌入式物理系统的基本语义的嵌入。我们验证了学习嵌入的质量,以研究与标准的黑框分类器和最新时间序列分类技术相比,可以从嵌入中解码的物理类别可以在多大程度上解码。我们发现,我们的嵌入式编码基础数据的重要物理特性,包括固定点的稳定性,能量保存以及流量的不可压缩性,比竞争方法更大。我们最终将嵌入在气象数据的分析中,表明我们可以检测到有意义的特征。总的来说,我们的结果证明了嵌入方法的生存能力,以发现物理系统中动态特征。
Dynamical systems are found in innumerable forms across the physical and biological sciences, yet all these systems fall naturally into universal equivalence classes: conservative or dissipative, stable or unstable, compressible or incompressible. Predicting these classes from data remains an essential open challenge in computational physics at which existing time-series classification methods struggle. Here, we propose, \texttt{phase2vec}, an embedding method that learns high-quality, physically-meaningful representations of 2D dynamical systems without supervision. Our embeddings are produced by a convolutional backbone that extracts geometric features from flow data and minimizes a physically-informed vector field reconstruction loss. In an auxiliary training period, embeddings are optimized so that they robustly encode the equations of unseen data over and above the performance of a per-equation fitting method. The trained architecture can not only predict the equations of unseen data, but also, crucially, learns embeddings that respect the underlying semantics of the embedded physical systems. We validate the quality of learned embeddings investigating the extent to which physical categories of input data can be decoded from embeddings compared to standard blackbox classifiers and state-of-the-art time series classification techniques. We find that our embeddings encode important physical properties of the underlying data, including the stability of fixed points, conservation of energy, and the incompressibility of flows, with greater fidelity than competing methods. We finally apply our embeddings to the analysis of meteorological data, showing we can detect climatically meaningful features. Collectively, our results demonstrate the viability of embedding approaches for the discovery of dynamical features in physical systems.