论文标题
多种植式砂圈,方向和同条二元性
Multi-planarizable quivers, orientifolds, and conformal dualities
论文作者
论文摘要
我们研究了四维$ \ Mathcal {n} = 1 $ toric Quiver仪表理论的四维家庭的前瞻性预测。我们仅限于具有与多个周期性平面图相关的异常属性的箭纹,这些图表通常会引起不相等的模型。合适的方向投影通过共形双重性与后者的亚家族相关。也就是说,存在连接投影模型的边际变形。变形在某些超电势交互中以符号翻转的形式进行,类似于$ \ m natercal {n} = 4 $ sym的$β$ - 定义。我们的施工将先前的结果推广到PDP $ _ {3B} $和PDP $ _ {3C} $奇异性的方向预测。
We study orientifold projections of families of four-dimensional $\mathcal{N}=1$ toric quiver gauge theories. We restrict to quivers that have the unusual property of being associated with multiple periodic planar diagrams which give rise, in general, to inequivalent models. A suitable orientifold projection relates a subfamily of the latter by conformal duality. That is, there exist exactly marginal deformations that connect the projected models. The deformations take the form of a sign flip in some of the superpotential interactions, similarly to the $β$-deformation of $\mathcal{N}=4$ SYM. Our construction generalizes previous results on the orientifold projections of the PdP$_{3b}$ and PdP$_{3c}$ singularities.