论文标题

RLSEP:学习标签是多标签分类的排名

RLSEP: Learning Label Ranks for Multi-label Classification

论文作者

Dari, Emine, Yesilkaynak, V. Bugra, Mertan, Alican, Unal, Gozde

论文摘要

多标签排名映射实例可从多个可能的类别中排名一组的预测标签。多标签学习问题的排名方法因其在多标签分类方面的成功而受到关注,其中一种众所周知的方法是成对标签排名。但是,大多数现有方法都假定仅知道有关偏好关系的部分信息,这是从标签的分配到正面和负面组合的,然后以同样重要性对待标签。在本文中,我们关注当提供真实标签集的顺序时,我们关注排名的独特挑战。我们提出了一种新颖的专用损失函数,以通过合并错误排名对的惩罚来优化模型,并利用输入中存在的排名信息。我们的方法在合成和现实世界排名的数据集上达到了最佳报告的性能指标,并显示出标签总排名的改进。我们的实验结果表明,我们的方法可以推广到各种多标签分类和排名任务,同时揭示了针对某个排名排序的校准。

Multi-label ranking maps instances to a ranked set of predicted labels from multiple possible classes. The ranking approach for multi-label learning problems received attention for its success in multi-label classification, with one of the well-known approaches being pairwise label ranking. However, most existing methods assume that only partial information about the preference relation is known, which is inferred from the partition of labels into a positive and negative set, then treat labels with equal importance. In this paper, we focus on the unique challenge of ranking when the order of the true label set is provided. We propose a novel dedicated loss function to optimize models by incorporating penalties for incorrectly ranked pairs, and make use of the ranking information present in the input. Our method achieves the best reported performance measures on both synthetic and real world ranked datasets and shows improvements on overall ranking of labels. Our experimental results demonstrate that our approach is generalizable to a variety of multi-label classification and ranking tasks, while revealing a calibration towards a certain ranking ordering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源