论文标题
Fano流形的库兰尼族家族的霍奇·拉普拉斯(Hodge Laplacian)和几何形状
Hodge Laplacian and geometry of Kuranishi family of Fano manifolds
论文作者
论文摘要
我们首先获得Fano歧管上Hodge Laplacian的特征值估计值,该杂种来自Bochner-Kodaira公式。然后,我们将其应用于研究Fano歧管变形的Kuranishi家族的几何形状。我们表明,原始的Kähler形式仍然是Kähler形式的Kähler形式,对于Kuranishi家族的其他成员,并具有明确的Ricci潜力公式。我们还表明,我们的设置为Donaldson-Fujiki图片提供了另一个帐户。
We first obtain eigenvalue estimates for the Hodge Laplacian on Fano manifolds, which follow from the Bochner-Kodaira formula. Then we apply it to study the geometry of the Kuranishi family of deformations of Fano manifolds. We show that the original Kähler form remains to be a Kähler form for other members of the Kuranishi family, and give an explicit formula of the Ricci potential. We also show that our set-up gives another account for the Donaldson-Fujiki picture.