论文标题
差距保留重新配置问题之间的减少
Gap Preserving Reductions Between Reconfiguration Problems
论文作者
论文摘要
组合重新配置是一个越来越多的研究领域,研究了搜索问题的一对解决方案之间的转换性问题。我们考虑重新配置问题优化变体的近似性;例如,对于布尔公式$φ$和两个令人满意的真理分配$σ_ {\ sf s} $和$σ_ {\ sf t} $对于$ $ $ $,MAXMIN SAT重新配置要求最大程度地将满足$φ$的最小值$σ的最小分数SF} SF immimimim缩短。 $σ_ {\ sf t} $。求解此类优化变体,我们可能会获得一个重新配置序列,其中包括几乎令人满意的真实分配。 在这项研究中,我们证明了一系列具有差距的减少,以证明在某些合理的假设下,一系列重新配置问题是近似近似的pspace。我们的起点是一个新的工作假设,称为重新配置不XIMIBITASITASS(RIH),它断言Maxmin CSP重新配置的差距版本是PSPACE-HARD。该假设可能被认为是PCP定理的重新配置类似物。我们的主要结果是近似Maxmin $ 3 $ -SAT重新配置有限发生在RIH下的Pspace-Hards。其证明的症结在于,从Maxmin二进制CSP重新配置到有限程度的差距减少。由于使用papadimitriou和yannakakis引起的扩展图的简单应用降低技术并不能保留完美的完整性,因此我们将字母修改为同时修改字母,就好像每个顶点可以同时使用一对值。为了实现健全的要求,我们进一步应用了近拉马尼亚图的明确家族和膨胀器混合引理。作为主要结果的应用,我们证明在RIH下,流行重新配置问题的优化变体是近似值的pspace-hard。
Combinatorial reconfiguration is a growing research field studying problems on the transformability between a pair of solutions of a search problem. We consider the approximability of optimization variants of reconfiguration problems; e.g., for a Boolean formula $φ$ and two satisfying truth assignments $σ_{\sf s}$ and $σ_{\sf t}$ for $φ$, Maxmin SAT Reconfiguration requires to maximize the minimum fraction of satisfied clauses of $φ$ during transformation from $σ_{\sf s}$ to $σ_{\sf t}$. Solving such optimization variants approximately, we may obtain a reconfiguration sequence comprising almost-satisfying truth assignments. In this study, we prove a series of gap-preserving reductions to give evidence that a host of reconfiguration problems are PSPACE-hard to approximate, under some plausible assumption. Our starting point is a new working hypothesis called the Reconfiguration Inapproximability Hypothesis (RIH), which asserts that a gap version of Maxmin CSP Reconfiguration is PSPACE-hard. This hypothesis may be thought of as a reconfiguration analogue of the PCP theorem. Our main result is PSPACE-hardness of approximating Maxmin $3$-SAT Reconfiguration of bounded occurrence under RIH. The crux of its proof is a gap-preserving reduction from Maxmin Binary CSP Reconfiguration to itself of bounded degree. Because a simple application of the degree reduction technique using expander graphs due to Papadimitriou and Yannakakis does not preserve the perfect completeness, we modify the alphabet as if each vertex could take a pair of values simultaneously. To accomplish the soundness requirement, we further apply an explicit family of near-Ramanujan graphs and the expander mixing lemma. As an application of the main result, we demonstrate that under RIH, optimization variants of popular reconfiguration problems are PSPACE-hard to approximate.