论文标题
颤抖的对角和开放式BPS状态
Quiver diagonalization and open BPS states
论文作者
论文摘要
我们表明,可以用生成功能$ p_q $捕获的一个对称颤动$ q $的动机唐纳森 - 托马斯不变,可以在另一个颤动$ q^{(\ infty)} $(几乎总是)无限尺寸的另一个颤动$ q^{(\ infty)} $中编码,其唯一的零件是循环的,并且其生成函数$ p_ p_q po_ po_q po_q po_q po_q forpor $ p_q forty $ po_q forty $ p_ pod forty $ p_ forty $ po_q forty $ p_q^^q^{q^{q^{识别生成参数。该声明的后果包括对唐纳森 - 托马斯(Donaldson-Thomas)和拉巴斯蒂达·马里尼(Labastida-Mariño-oguri-vafa)的完整性证明的概括,这些不变性不断计算开放式BPS状态,以及表达动机的唐纳森 - 托马斯 - 托马斯 - 托马斯不变性的不变性,$ m $ loop-loop-loop-loop iop corivers niutary Symmetric quivers。特别是,这意味着$ M $ -Loop震颤不变的已经知道的组合解释扩展到任意对称震颤。
We show that motivic Donaldson-Thomas invariants of a~symmetric quiver $Q$, captured by the generating function $P_Q$, can be encoded in another quiver $Q^{(\infty)}$ of (almost always) infinite size, whose only arrows are loops, and whose generating function $P_{Q^{(\infty)}}$ is equal to $P_Q$ upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson-Thomas and Labastida-Mariño-Ooguri-Vafa invariants that count open BPS states, as well as expressing motivic Donaldson-Thomas invariants of an arbitrary symmetric quiver in terms of invariants of $m$-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of $m$-loop quivers extends to arbitrary symmetric quivers.