论文标题

基于余弦规则的离散截面曲率

A Cosine Rule-Based Discrete Sectional Curvature for Graphs

论文作者

Plessis, J. F. Du, Arsiwalla, Xerxes D.

论文摘要

一个人如何将差异几何构建体概括为图形和其他组合结构的离散世界的曲率?对于分析量子重力中离散时空模型的模型,此问题具有重要的重要性。推断网络科学中的网络几何形状;和数据科学中的流形学习。本文的关键贡献是介绍和验证一个新的离散截面曲率估计值,以使其呈较低度度的随机图。后者是通过具有恒定截面曲率的不同歧管上的特定图形洒水方法构造的。我们定义了度量失真的概念,该概念量化了图度量近似于基础歧管的度量的程度。我们展示了如何完善图形洒水算法,以产生用最小的度量失真产生硬环随机几何图。我们为球体,双曲线和欧几里得平面构建随机几何图;我们验证曲率估计器。数值分析表明,随着平均度量失真为零,估计曲率的误差会减小,从而证明了估计值的收敛性。我们还与其他现有的离散曲率度量进行了比较。最后,我们证明了两个实际应用:(i)使用地理数据估算地球半径; (ii)自相似分形的截面曲率分布。

How does one generalize differential geometric constructs such as curvature of a manifold to the discrete world of graphs and other combinatorial structures? This problem carries significant importance for analyzing models of discrete spacetime in quantum gravity; inferring network geometry in network science; and manifold learning in data science. The key contribution of this paper is to introduce and validate a new estimator of discrete sectional curvature for random graphs with low metric-distortion. The latter are constructed via a specific graph sprinkling method on different manifolds with constant sectional curvature. We define a notion of metric distortion, which quantifies how well the graph metric approximates the metric of the underlying manifold. We show how graph sprinkling algorithms can be refined to produce hard annulus random geometric graphs with minimal metric distortion. We construct random geometric graphs for spheres, hyperbolic and euclidean planes; upon which we validate our curvature estimator. Numerical analysis reveals that the error of the estimated curvature diminishes as the mean metric distortion goes to zero, thus demonstrating convergence of the estimate. We also perform comparisons to other existing discrete curvature measures. Finally, we demonstrate two practical applications: (i) estimation of the earth's radius using geographical data; and (ii) sectional curvature distributions of self-similar fractals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源