论文标题
结构化知识增强的开放世界故事生成:一项全面调查
Open-world Story Generation with Structured Knowledge Enhancement: A Comprehensive Survey
论文作者
论文摘要
讲故事和叙事是人类经验的基础,与我们的社会和文化参与交织在一起。因此,研究人员长期以来一直试图创建可以自动生成故事的系统。近年来,由深度学习和大量数据资源提供支持,自动故事的产生显示出重大进展。但是,巨大的挑战,例如在产生的故事中对全球连贯性的需求,仍然阻碍了与人类叙述者相同的讲故事能力的产生模型。为了应对这些挑战,许多研究试图将结构化的知识注入生成过程,这被称为结构化知识增强的故事产生。结合外部知识可以增强故事事件之间的逻辑连贯性,实现更好的知识基础,并减轻故事中的过度概括和重复问题。这项调查提供了对该研究领域的最新综合综述:(i)我们提出了一个系统的分类法,涉及现有方法如何将结构化知识整合到故事中; (ii)我们总结了涉及的故事语料库,结构化知识数据集和评估指标; (iii)我们对知识增强的故事产生的挑战,并在有希望的未来研究方向上阐明了多维见解。
Storytelling and narrative are fundamental to human experience, intertwined with our social and cultural engagement. As such, researchers have long attempted to create systems that can generate stories automatically. In recent years, powered by deep learning and massive data resources, automatic story generation has shown significant advances. However, considerable challenges, like the need for global coherence in generated stories, still hamper generative models from reaching the same storytelling ability as human narrators. To tackle these challenges, many studies seek to inject structured knowledge into the generation process, which is referred to as structured knowledge-enhanced story generation. Incorporating external knowledge can enhance the logical coherence among story events, achieve better knowledge grounding, and alleviate over-generalization and repetition problems in stories. This survey provides the latest and comprehensive review of this research field: (i) we present a systematic taxonomy regarding how existing methods integrate structured knowledge into story generation; (ii) we summarize involved story corpora, structured knowledge datasets, and evaluation metrics; (iii) we give multidimensional insights into the challenges of knowledge-enhanced story generation and cast light on promising directions for future study.