论文标题

Wasserstein的距离估算值

Wasserstein distance estimates for jump-diffusion processes

论文作者

Breton, Jean-Christophe, Privault, Nicolas

论文摘要

我们在随机积分(ITô)过程的概率分布之间取得了wasserstein的距离界限,该过程与跳跃$(x_t)_ {t \ in [0,t]} $与跳跃 - 扩散过程$(x^\ ast_t)_ {t \ in [0,t]} $。我们的边界是使用$(x_t)_ {t \ in [0,t]} $的随机特性和$(x^\ ast_t)_ {t \ in [0,t]} $的$(x^\ ast_t)$的跳转系数的$(x^\ ast_t)} $特别适用于$ x_t $的$(x^\ ast_t)_ {我们的方法使用随机演算参数和$ l^p $的集成性结果,用于跳跃随机微分方程的流动,而无需依赖Stein方程。

We derive Wasserstein distance bounds between the probability distributions of a stochastic integral (Itô) process with jumps $(X_t)_{t\in [0,T]}$ and a jump-diffusion process $(X^\ast_t)_{t\in [0,T]}$. Our bounds are expressed using the stochastic characteristics of $(X_t)_{t\in [0,T]}$ and the jump-diffusion coefficients of $(X^\ast_t)_{t\in [0,T]}$ evaluated in $X_t$, and apply in particular to the case of different jump characteristics. Our approach uses stochastic calculus arguments and $L^p$ integrability results for the flow of stochastic differential equations with jumps, without relying on the Stein equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源