论文标题

ProductGraphsleepnet:使用专心的时间聚集的产品时空图形学习的睡眠分期

ProductGraphSleepNet: Sleep Staging using Product Spatio-Temporal Graph Learning with Attentive Temporal Aggregation

论文作者

Einizade, Aref, Nasiri, Samaneh, Sardouie, Sepideh Hajipour, Clifford, Gari

论文摘要

睡眠阶段的分类在理解和诊断睡眠病理生理学方面起着至关重要的作用。睡眠阶段的评分在很大程度上取决于专家的视觉检查,即耗时且主观的程序。最近,已经利用了深度学习神经网络方法来开发广义的自动睡眠阶段,并说明了分布的变化,这可能是由固有的间/受试者内的可变性,跨数据集的异质性以及不同记录环境引起的。但是,这些网络忽略了大脑区域之间的连接,而无视临时邻近睡眠时期之间的顺序连接。为了解决这些问题,这项工作提出了一个基于自适应产品图的图形卷积网络,名为ProductGraphsleepnet,用于学习联合时空时空图,以及双向门控的复发单元和一个修改的图形注意网络,以捕获睡眠阶段过渡的专心动态。对两个公共数据库的评估:蒙特利尔睡眠研究档案(MASS)SS3;和昏昏欲睡的sleepedf包含62和20个健康受试者的全夜多个多摄影记录,表明性能与最先进的效果相当(准确性:0.867; 0.838; 0.838; 0.838,f1得分:0.818; 0.774; 0.774; 0.774和kappa:0.802; 0.802; 0.775; 0.775; 0.775; 0.775分别在每个数据库上)。更重要的是,拟议的网络使临床医生可以理解和解释睡眠阶段的学习连接图。

The classification of sleep stages plays a crucial role in understanding and diagnosing sleep pathophysiology. Sleep stage scoring relies heavily on visual inspection by an expert that is time consuming and subjective procedure. Recently, deep learning neural network approaches have been leveraged to develop a generalized automated sleep staging and account for shifts in distributions that may be caused by inherent inter/intra-subject variability, heterogeneity across datasets, and different recording environments. However, these networks ignore the connections among brain regions, and disregard the sequential connections between temporally adjacent sleep epochs. To address these issues, this work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint spatio-temporal graphs along with a bidirectional gated recurrent unit and a modified graph attention network to capture the attentive dynamics of sleep stage transitions. Evaluation on two public databases: the Montreal Archive of Sleep Studies (MASS) SS3; and the SleepEDF, which contain full night polysomnography recordings of 62 and 20 healthy subjects, respectively, demonstrates performance comparable to the state-of-the-art (Accuracy: 0.867;0.838, F1-score: 0.818;0.774 and Kappa: 0.802;0.775, on each database respectively). More importantly, the proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源