论文标题
在$ z $ dominance上,换档对称性和旋转局部性在高旋转理论中
On $z$-dominance, shift symmetry and spin locality in higher-spin theory
论文作者
论文摘要
该论文的目的是针对高自旋区域的定性标准。对Vasiliev方程的扰动分析产生了所谓的$ z $二世非本地性,但是在所有已知情况下,最终结果旋转本地存在因交互顶点而消失。这导致了$ z $ - 主导猜想,这表明观察到的取消是普遍的。在这里,我们指定条件,包括观察高自旋移位对称性,并证明了最近提出的猜想的有效性。我们还定义了一类自旋 - 旋转和对称场的重新定义,这被认为是可允许的旋转局部性。
The paper aims at the qualitative criterion of higher-spin locality. Perturbative analysis of the Vasiliev equations gives rise to the so-called $z$-dominated non-localities which nevertheless disappear from interaction vertices leaving the final result spin-local in all known cases. This has led one to the $z$ -- dominance conjecture that suggests universality of the observed cancellations. Here we specify conditions which include observation of the higher-spin shift symmetry and prove validity of this recently proposed conjecture. We also define a class of spin-local and shift-symmetric field redefinitions which is argued to be the admissible one with respect to spin-locality.