论文标题
通过有毒物品嵌入和防御
Untargeted Attack against Federated Recommendation Systems via Poisonous Item Embeddings and the Defense
论文作者
论文摘要
联合建议(FedRec)可以在不收集用户数据的情况下培训个性化的推荐人,但是分散的性质使其容易受到中毒攻击的影响。大多数先前的研究都集中在针对性的攻击上,以推广某些项目,而旨在降低FedRec系统整体性能的非目标攻击仍然不那么探索。实际上,非目标的攻击会破坏用户体验,并给服务提供商带来严重的财务损失。但是,现有的未靶向攻击方法是对FedRec系统的不适用或无效。在本文中,我们深入研究了无靶向的攻击及其对联邦军系统的防御。 (i)我们提出了一种新颖的非目标攻击方法ClusterAttack。它上传有毒梯度将项目嵌入到几个密集的群集中,这使得推荐人在同一集群中为这些项目产生相似的分数,并扰乱排名顺序。 (ii)我们提出了一种基于统一的防御机制(联盟),以保护联邦快递系统免受此类攻击。我们设计了一项对比的学习任务,将项目嵌入到均匀分布的情况下。然后,服务器通过估计更新项目嵌入的均匀性来过滤这些恶意梯度。两个公共数据集的实验表明,ClusterAttack可以有效地降低FedRec系统的性能,同时绕过许多防御方法,而Union可以提高系统抵抗对各种不受限制攻击的阻力,包括我们的ClusterAttack。
Federated recommendation (FedRec) can train personalized recommenders without collecting user data, but the decentralized nature makes it susceptible to poisoning attacks. Most previous studies focus on the targeted attack to promote certain items, while the untargeted attack that aims to degrade the overall performance of the FedRec system remains less explored. In fact, untargeted attacks can disrupt the user experience and bring severe financial loss to the service provider. However, existing untargeted attack methods are either inapplicable or ineffective against FedRec systems. In this paper, we delve into the untargeted attack and its defense for FedRec systems. (i) We propose ClusterAttack, a novel untargeted attack method. It uploads poisonous gradients that converge the item embeddings into several dense clusters, which make the recommender generate similar scores for these items in the same cluster and perturb the ranking order. (ii) We propose a uniformity-based defense mechanism (UNION) to protect FedRec systems from such attacks. We design a contrastive learning task that regularizes the item embeddings toward a uniform distribution. Then the server filters out these malicious gradients by estimating the uniformity of updated item embeddings. Experiments on two public datasets show that ClusterAttack can effectively degrade the performance of FedRec systems while circumventing many defense methods, and UNION can improve the resistance of the system against various untargeted attacks, including our ClusterAttack.