论文标题

DOSNET作为非黑盒PDE求解器:深度学习遇到操作员分裂时

DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator Splitting

论文作者

Lan, Yuan, Li, Zhen, Sun, Jie, Xiang, Yang

论文摘要

深度神经网络(DNNS)最近成为分析和解决科学和工程应用中出现的复杂微分方程的有前途的工具。替代传统数值方案,基于学习的求解器利用DNN的表示能力以自动化方式近似输入输出关系。但是,缺乏物理学通常会使构建同时达到高精度,低计算负担和可解释性的神经网络解决方案很难。在这项工作中,专注于具有可分解操作员的一类进化PDE,我们表明,可以利用这些方程式的经典``运算符拆分''数值方案来利用这些方程式来设计神经网络体系结构。这引起了基于学习的PDE求解器,我们将其命名为深层操作员分解网络(DOSNET)。这种非黑色框网络设计是根据物理规则构建的,管理基础动态的操作员包含可学习的参数,因此比标准操作员分裂方案更灵活。训练后,它可以实现相同类型的PDE的快速解决方案。为了验证DOSNET内部的特殊结构,我们将线性PDE作为基准,并为重量行为提供数学解释。此外,为了证明我们新的AI增强PDE求解器的优势,我们在几种类型的操作员可兼容的微分方程上训练和验证它。我们还将DOSNET应用于非线性Schrödinger方程(NLSE),这些方程在现代光纤传输系统的信号处理中具有重要应用,实验结果表明,与数值方案相比,我们的模型具有更好的准确性和更低的计算复杂性,而计算复杂性则更低。

Deep neural networks (DNNs) recently emerged as a promising tool for analyzing and solving complex differential equations arising in science and engineering applications. Alternative to traditional numerical schemes, learning-based solvers utilize the representation power of DNNs to approximate the input-output relations in an automated manner. However, the lack of physics-in-the-loop often makes it difficult to construct a neural network solver that simultaneously achieves high accuracy, low computational burden, and interpretability. In this work, focusing on a class of evolutionary PDEs characterized by having decomposable operators, we show that the classical ``operator splitting'' numerical scheme of solving these equations can be exploited to design neural network architectures. This gives rise to a learning-based PDE solver, which we name Deep Operator-Splitting Network (DOSnet). Such non-black-box network design is constructed from the physical rules and operators governing the underlying dynamics contains learnable parameters, and is thus more flexible than the standard operator splitting scheme. Once trained, it enables the fast solution of the same type of PDEs. To validate the special structure inside DOSnet, we take the linear PDEs as the benchmark and give the mathematical explanation for the weight behavior. Furthermore, to demonstrate the advantages of our new AI-enhanced PDE solver, we train and validate it on several types of operator-decomposable differential equations. We also apply DOSnet to nonlinear Schrödinger equations (NLSE) which have important applications in the signal processing for modern optical fiber transmission systems, and experimental results show that our model has better accuracy and lower computational complexity than numerical schemes and the baseline DNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源