论文标题

通过深图扩散信息在COVID-19大流行期间的人类流动性建模

Human Mobility Modeling During the COVID-19 Pandemic via Deep Graph Diffusion Infomax

论文作者

Liu, Yang, Rong, Yu, Guo, Zhuoning, Chen, Nuo, Xu, Tingyang, Tsung, Fugee, Li, Jia

论文摘要

非药物干预措施(NPI),例如社交聚会限制,已通过减少人们的接触来降低Covid-19的传播有效性。为了支持政策制定者,多项研究首先通过宏指标(例如平均每日旅行距离)对人类移动性进行了建模,然后研究了NPI的有效性。在这项工作中,我们专注于移动性建模,从微观的角度来看,旨在预测Covid-19案例将访问的位置。由于NPI通常会造成经济和社会损失,因此这种微观的观点预测在设计和评估时受益于政府。但是,在现实情况下,严格的隐私数据保护法规导致严重的数据稀疏问题(即有限的案例和位置信息)。为了应对这些挑战,我们将微观透视迁移率建模制定到计算扩散与位置之间的相关性得分,这是在几何图上的条件。我们提出了一个名为Deep Graph扩散信息(DGDI)的模型,该模型共同模拟了包括几何图,一组扩散和一组位置的变量。为了促进Covid-19的研究,我们提出了两个基准,这些基准包含包含COVID-19病例的几何图和位置历史的两个基准。两个基准测试的广泛实验表明,DGDI明显优于其他竞争方法。

Non-Pharmaceutical Interventions (NPIs), such as social gathering restrictions, have shown effectiveness to slow the transmission of COVID-19 by reducing the contact of people. To support policy-makers, multiple studies have first modeled human mobility via macro indicators (e.g., average daily travel distance) and then studied the effectiveness of NPIs. In this work, we focus on mobility modeling and, from a micro perspective, aim to predict locations that will be visited by COVID-19 cases. Since NPIs generally cause economic and societal loss, such a micro perspective prediction benefits governments when they design and evaluate them. However, in real-world situations, strict privacy data protection regulations result in severe data sparsity problems (i.e., limited case and location information). To address these challenges, we formulate the micro perspective mobility modeling into computing the relevance score between a diffusion and a location, conditional on a geometric graph. we propose a model named Deep Graph Diffusion Infomax (DGDI), which jointly models variables including a geometric graph, a set of diffusions and a set of locations.To facilitate the research of COVID-19 prediction, we present two benchmarks that contain geometric graphs and location histories of COVID-19 cases. Extensive experiments on the two benchmarks show that DGDI significantly outperforms other competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源