论文标题

在边缘电晕产品图上击中随机行走的时间

Hitting Times of Random Walks on Edge Corona Product Graphs

论文作者

Zhu, Mingzhe, Xu, Wanyue, Li, Wei, Zhang, Zhongzhi, Kan, Haibin

论文摘要

图产品已广泛应用于模型的复杂网络,其在现实世界中复杂系统中观察到了引人注目的属性。在本文中,我们研究了通过Edge Corona产品迭代产生的一类图表的随机步行时间。我们首先将递归溶液推导到与图相关的归一化邻接矩阵的特征值和特征向量。基于这些结果,我们进一步获得了有关撞击随机步行时间的有趣数量,提供了两节点击打时间的迭代公式,以及凯门尼常数的封闭形式表达式定义为所有节点对的打击时间的加权平均值,以及所有节点击中所有节点的算术时间的平均值。

Graph products have been extensively applied to model complex networks with striking properties observed in real-world complex systems. In this paper, we study the hitting times for random walks on a class of graphs generated iteratively by edge corona product. We first derive recursive solutions to the eigenvalues and eigenvectors of the normalized adjacency matrix associated with the graphs. Based on these results, we further obtain interesting quantities about hitting times of random walks, providing iterative formulas for two-node hitting time, as well as closed-form expressions for the Kemeny's constant defined as a weighted average of hitting times over all node pairs, as well as the arithmetic mean of hitting times of all pairs of nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源