论文标题

部分可观测时空混沌系统的无模型预测

BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud Pre-training in Autonomous Driving Scenarios

论文作者

Lin, Zhiwei, Wang, Yongtao, Qi, Shengxiang, Dong, Nan, Yang, Ming-Hsuan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Existing LiDAR-based 3D object detection methods for autonomous driving scenarios mainly adopt the training-from-scratch paradigm. Unfortunately, this paradigm heavily relies on large-scale labeled data, whose collection can be expensive and time-consuming. Self-supervised pre-training is an effective and desirable way to alleviate this dependence on extensive annotated data. In this work, we present BEV-MAE, an efficient masked autoencoder pre-training framework for LiDAR-based 3D object detection in autonomous driving. Specifically, we propose a bird's eye view (BEV) guided masking strategy to guide the 3D encoder learning feature representation in a BEV perspective and avoid complex decoder design during pre-training. Furthermore, we introduce a learnable point token to maintain a consistent receptive field size of the 3D encoder with fine-tuning for masked point cloud inputs. Based on the property of outdoor point clouds in autonomous driving scenarios, i.e., the point clouds of distant objects are more sparse, we propose point density prediction to enable the 3D encoder to learn location information, which is essential for object detection. Experimental results show that BEV-MAE surpasses prior state-of-the-art self-supervised methods and achieves a favorably pre-training efficiency. Furthermore, based on TransFusion-L, BEV-MAE achieves new state-of-the-art LiDAR-based 3D object detection results, with 73.6 NDS and 69.6 mAP on the nuScenes benchmark. The source code will be released at https://github.com/VDIGPKU/BEV-MAE

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源