论文标题
MINAA:微生物组网络对齐算法
MiNAA: Microbiome Network Alignment Algorithm
论文作者
论文摘要
我们的微生物组网络比对算法(MINAA)使用图形对准器(GRAAL)算法和匈牙利算法的组合对齐两个微生物网络。网络对齐算法找到具有最高相似性的节点对(第一个网络的一个节点,另一个网络中的另一个节点)。传统上,相似性被定义为拓扑相似性,使两个节点周围的邻域相似。网络比对方法(例如Netal和L-Graal)的最新实施也包括生物学相似性的度量,但是这些方法仅限于一种特定类型的生物学相似性(例如,L-Graal中的序列相似性)。我们的工作通过允许用户输入任何类型的生物学相似性来扩展现有的网络对齐实现。这种灵活性使用户可以选择任何适合手头研究的生物学相似性。此外,与针对蛋白质或基因相互作用网络量身定制的大多数现有网络对齐方法不同,我们的工作是第一个适合微生物组网络的工作。
Our Microbiome Network Alignment Algorithm (MiNAA) aligns two microbial networks using a combination of the GRAph ALigner (GRAAL) algorithm and the Hungarian algorithm. Network alignment algorithms find pairs of nodes (one node from the first network and the other node from the second network) that have the highest similarity. Traditionally, similarity has been defined as topological similarity such that the neighborhoods around the two nodes are similar. Recent implementations of network alignment methods such as NETAL and L-GRAAL also include measures of biological similarity, yet these methods are restricted to one specific type of biological similarity (e.g. sequence similarity in L-GRAAL). Our work extends existing network alignment implementations by allowing any type of biological similarity to be input by the user. This flexibility allows the user to choose whatever measure of biological similarity is suitable for the study at hand. In addition, unlike most existing network alignment methods that are tailored for protein or gene interaction networks, our work is the first one suited for microbiome networks.