论文标题

一种合奏方法,可以自动用光学相干层析成像血管造影图像自动对糖尿病性视网膜病进行评分

An Ensemble Method to Automatically Grade Diabetic Retinopathy with Optical Coherence Tomography Angiography Images

论文作者

Zheng, Yuhan, Wu, Fuping, Papież, Bartłomiej W.

论文摘要

糖尿病性视网膜病(DR)是糖尿病的并发症,也是全球人口视力障碍的主要原因之一。由于DR的早期表现通常非常温和且难以检测,因此通过筛查进行准确的诊断对于防止后期的视力丧失在临床上很重要。 In this work, we propose an ensemble method to automatically grade DR using ultra-wide optical coherence tomography angiography (UW-OCTA) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022. First, we adopt the state-of-the-art classification networks, i.e., ResNet, DenseNet, EfficientNet, and VGG, and train them to grade UW-OCTA images with different splits of the available数据集。最终,我们获得了25个模型,其中选择了前16个模型并结合起来生成最终预测。在培训过程中,我们还研究了多任务学习策略,并添加辅助分类任务,即图像质量评估,以提高模型性能。我们的最终集合模型在内部测试数据集上实现了0.9346的二次加权KAPPA(QWK),曲线(AUC)的面积为0.9766,QWK为0.839,AUC为0.8978,在DRAC挑战测试数据集上的AUC为0.8978。

Diabetic retinopathy (DR) is a complication of diabetes, and one of the major causes of vision impairment in the global population. As the early-stage manifestation of DR is usually very mild and hard to detect, an accurate diagnosis via eye-screening is clinically important to prevent vision loss at later stages. In this work, we propose an ensemble method to automatically grade DR using ultra-wide optical coherence tomography angiography (UW-OCTA) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022. First, we adopt the state-of-the-art classification networks, i.e., ResNet, DenseNet, EfficientNet, and VGG, and train them to grade UW-OCTA images with different splits of the available dataset. Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions. During the training process, we also investigate the multi-task learning strategy, and add an auxiliary classification task, the Image Quality Assessment, to improve the model performance. Our final ensemble model achieved a quadratic weighted kappa (QWK) of 0.9346 and an Area Under Curve (AUC) of 0.9766 on the internal testing dataset, and the QWK of 0.839 and the AUC of 0.8978 on the DRAC challenge testing dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源