论文标题

CAT:学习从多信息融合中协作渠道和空间关注

CAT: Learning to Collaborate Channel and Spatial Attention from Multi-Information Fusion

论文作者

Wu, Zizhang, Wang, Man, Sun, Weiwei, Li, Yuchen, Xu, Tianhao, Wang, Fan, Huang, Keke

论文摘要

事实证明,渠道和空间注意机制可显着增强深卷卷积神经网络(CNN)的性能。大多数现有的方法都集中在一种方法或并行(系列)上,从而忽略了两个注意事项之间的协作。为了更好地建立两种类型的注意力之间的特征相互作用,我们提出了一个插件的注意模块,我们将其称为“ CAT”,以基于学到的特征激活空间和渠道注意力之间的协作。具体而言,我们将特征表示为可训练的系数(即Colla因子),以适应地结合不同注意模块的贡献,以更好地拟合不同的图像层次结构和任务。此外,除了全球平均池(GAP)和全球最大池(GMP)操作员之外,我们还建议全球熵池(GEP),这是通过测量特征图的信息障碍来抑制噪声信号的有效组件。我们将三向合并操作引入注意模块,并应用自适应机制融合其结果。对Coco,Pascal-VOC,CIFAR-100和ImageNet的广泛实验表明,我们的CAT在对象检测,实例分割和图像分类中优于现有的最新注意机制。该模型和代码将很快发布。

Channel and spatial attention mechanism has proven to provide an evident performance boost of deep convolution neural networks (CNNs). Most existing methods focus on one or run them parallel (series), neglecting the collaboration between the two attentions. In order to better establish the feature interaction between the two types of attention, we propose a plug-and-play attention module, which we term "CAT"-activating the Collaboration between spatial and channel Attentions based on learned Traits. Specifically, we represent traits as trainable coefficients (i.e., colla-factors) to adaptively combine contributions of different attention modules to fit different image hierarchies and tasks better. Moreover, we propose the global entropy pooling (GEP) apart from global average pooling (GAP) and global maximum pooling (GMP) operators, an effective component in suppressing noise signals by measuring the information disorder of feature maps. We introduce a three-way pooling operation into attention modules and apply the adaptive mechanism to fuse their outcomes. Extensive experiments on MS COCO, Pascal-VOC, Cifar-100, and ImageNet show that our CAT outperforms existing state-of-the-art attention mechanisms in object detection, instance segmentation, and image classification. The model and code will be released soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源