论文标题
通过分子束外延生长的单晶SNO(001)膜的受体和补偿供体掺杂及其光电和气感应的视角
Acceptor and compensating donor doping of single crystalline SnO (001) films grown by molecular beam epitaxy and its perspectives for optoelectronics and gas-sensing
论文作者
论文摘要
(LA和GA)一氧化锡(氧化锡,锡(II),氧化物,SNO)薄膜是通过血浆辅助和亚氧化物分子束外延生长的,掺杂剂的浓度范围从$ \ \最times10^{18} $ cm $ cm $ cm $^{ - 3} $^{ - 3} $^{ - 3} $ $ 2 \ times10^{21} $ cm $^{ - 3} $。在这个浓度范围内,将GA掺入SNO的限制受到$ 1.2 \ times10^{21} $ cm $ $^{ - 3} $ ga的形成,而LA的掺入显示较低的溶解度极限。掺杂样品上的运输测量结果表明,GA充当受体,而LA充当补偿供体。而Ga掺杂导致孔浓度从$ 1 \ times10^{18} $ cm $ $^{ - 3} -1 \ times10^{19} $ cm $ $^{ - 3} $,无意识地(uid)sno(uid)sno notionally(uid)sno times10^times10^{19} $ cm $ $ cm $^3} $ comentration导致了半胰岛素的膜,没有可检测到的$ n $ type电导率。 Ab-Initio计算与我们对GA和LA的掺杂分配有定性的键,并进一步预测$ _ \ text {sn} $,以充当受体以及Al $ _ \ text {sn} $和b $ _ \ $ _ \ text {sn} $作为捐赠者。这些结果表明,控制$ p $ type SNO中的孔浓度的可能性,这对于一系列光电和气体感应应用可能很有用。
(La and Ga)-doped tin monoxide (stannous oxide, tin (II) oxide, SnO) thin films were grown by plasma-assisted and suboxide molecular beam epitaxy with dopant concentrations ranging from $\approx5\times10^{18}$cm$^{-3}$ to $2\times10^{21}$cm$^{-3}$. In this concentration range, the incorporation of Ga into SnO was limited by the formation of secondary phases observed at $1.2\times10^{21}$cm$^{-3}$ Ga, while the incorporation of La showed a lower solubility limit. Transport measurements on the doped samples reveal that Ga acts as an acceptor and La as a compensating donor. While Ga doping led to an increase of the hole concentration from $1\times10^{18}$cm$^{-3}-1\times10^{19}$cm$^{-3}$ for unintentionally (UID) SnO up to $5\times10^{19}$cm$^{-3}$, La-concentrations well in excess of the UID acceptor concentration resulted in semi-insulating films without detectable $n$-type conductivity. Ab-initio calculations qualitatively agree with our dopant assignment of Ga and La, and further predict In$_\text{Sn}$ to act as an acceptor as well as Al$_\text{Sn}$ and B$_\text{Sn}$ as donor. These results show the possibilities of controlling the hole concentration in $p$-type SnO, which can be useful for a range of optoelectronic and gas-sensing applications.