论文标题

解决N色冰模型

Solving the n-color ice model

论文作者

Addona, Patrick, Bockenhauer, Ethan, Brubaker, Ben, Cauthorn, Michael, Conefrey-Shinozaki, Cianan, Donze, David, Dudarov, William, Dukes, Jessamyn, Hardt, Andrew, Li, Cindy, Li, Jigang, Liu, Yanli, Puthanveetil, Neelima, Qudsi, Zain, Simons, Jordan, Sullivan, Joseph, Young, Autumn

论文摘要

考虑到两组$ n $颜色晶格型号的两组非零玻尔兹曼的重量,我们在这些玻尔兹曼的权重上提供明确的代数条件,以保证朝阳方程的解决方案(即,第三组重量)。此外,在这种情况下,我们提供了所有解决方案的明确的一维参数化。这些$ n $ - 色晶格型号之所以如此命名,是因为它们的可接受的顶点的边缘与$ n $颜色之一标记有额外限制。两色案例专门针对六个vertex模型,在这种情况下,我们的结果恢复了巴克斯特熟悉的二次条件以供溶解度。一般的$ n $ - 彩色案例包括对杨巴克斯特方程的重要解决方案,例如量子仿射的评估模块lie代数$ u_q(\ hat {\ mathfrak {\ mathfrak {sl}} _ n)$。最后,我们证明了在自然变换下这类解决方案的不变性,包括与德林菲尔德扭曲相关的解决方案。

Given an arbitrary choice of two sets of nonzero Boltzmann weights for $n$-color lattice models, we provide explicit algebraic conditions on these Boltzmann weights which guarantee a solution (i.e., a third set of weights) to the Yang-Baxter equation. Furthermore we provide an explicit one-dimensional parametrization of all solutions in this case. These $n$-color lattice models are so named because their admissible vertices have adjacent edges labeled by one of $n$ colors with additional restrictions. The two-colored case specializes to the six-vertex model, in which case our results recover the familiar quadric condition of Baxter for solvability. The general $n$-color case includes important solutions to the Yang-Baxter equation like the evaluation modules for the quantum affine Lie algebra $U_q(\hat{\mathfrak{sl}}_n)$. Finally, we demonstrate the invariance of this class of solutions under natural transformations, including those associated with Drinfeld twisting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源