论文标题
多流式辅助辅助有效的全球优化,以解决离散问题
Multi-surrogate Assisted Efficient Global Optimization for Discrete Problems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Decades of progress in simulation-based surrogate-assisted optimization and unprecedented growth in computational power have enabled researchers and practitioners to optimize previously intractable complex engineering problems. This paper investigates the possible benefit of a concurrent utilization of multiple simulation-based surrogate models to solve complex discrete optimization problems. To fulfill this, the so-called Self-Adaptive Multi-surrogate Assisted Efficient Global Optimization algorithm (SAMA-DiEGO), which features a two-stage online model management strategy, is proposed and further benchmarked on fifteen binary-encoded combinatorial and fifteen ordinal problems against several state-of-the-art non-surrogate or single surrogate assisted optimization algorithms. Our findings indicate that SAMA-DiEGO can rapidly converge to better solutions on a majority of the test problems, which shows the feasibility and advantage of using multiple surrogate models in optimizing discrete problems.