论文标题

部分可观测时空混沌系统的无模型预测

Large-scale density and velocity field reconstructions with neural networks

论文作者

Veena, Punyakoti Ganeshaiah, Lilow, Robert, Nusser, Adi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We assess a neural network (NN) method for reconstructing 3D cosmological density and velocity fields (target) from discrete and incomplete galaxy distributions (input). We employ second-order Lagrangian Perturbation Theory to generate a large ensemble of mock data to train an autoencoder (AE) architecture with a Mean Squared Error (MSE) loss function. The AE successfully captures nonlinear features arising from gravitational dynamics and the discreteness of the galaxy distribution. It preserves the positivity of the reconstructed density field and exhibits a weaker suppression of the power on small scales than the traditional linear Wiener filter (WF), which we use as a benchmark. In the density reconstruction, the reduction of the AE MSE relative to the WF is $\sim 15 \%$, whereas, for the velocity reconstruction, a relative reduction of up to a factor of two can be achieved. The AE is advantageous to the WF at recovering the distribution of the target fields, especially at the tails. In fact, trained with an MSE loss, any NN estimate approaches the unbiased mean of the underlying target given the input. This implies a slope of unity in the linear regression of the true on the NN-reconstructed field. Only for the special case of Gaussian fields, the NN and WF estimates are equivalent. Nonetheless, we also recover a linear regression slope of unity for the WF with non-Gaussian fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源