论文标题

部分可观测时空混沌系统的无模型预测

Beam-like topologically interlocked structures with hierarchical interlocking

论文作者

Koureas, Ioannis, Pundir, Mohit, Feldfogel, Shai, Kammer, David S.

论文摘要

拓扑互锁的材料和结构是无与伦比的互锁构件的组件,是多功能结构应用的有希望的概念。它们已显示出具有出色的机械性能,包括刚度,强度和韧性的出色组合,超出了通用工程材料可实现的功能。最近的工作已经建立了理论上的上限,以实现梁状拓扑结构的强度和韧性。但是,这种理论极限仅适用于具有不切实际的摩擦系数的结构。因此,在实际结构中是否可以实现仍然未知。在这里,我们证明了拓扑互锁的分层方法,灵感来自生物系统,克服了这些局限性,并为优化机械性能提供了途径。我们考虑横向上互锁的结构,它们具有可控振幅和波长的正弦表面形态,并使用数值模拟检查结构的特性。结果表明,表面形态的存在增加了界面的有效摩擦强度,如果设计良好,使我们能够以逼真的摩擦系数达到结构承载能力的理论极限。此外,我们观察到表面形态对界面有效摩擦系数的贡献通过结合表面曲率和表面梯度的标准很好地描述了。我们的研究证明了在梁状拓扑结构中构建表面形态的能力,从而显着增强其结构性能。

Topologically interlocked materials and structures, which are assemblies of unbonded interlocking building blocks, are promising concepts for versatile structural applications. They have been shown to exhibit exceptional mechanical properties, including outstanding combinations of stiffness, strength, and toughness, beyond those achievable with common engineering materials. Recent work has established a theoretical upper limit for the strength and toughness of beam-like topologically interlocked structures. However, this theoretical limit is only achievable for structures with unrealistically high friction coefficients; therefore, it remains unknown whether it is achievable in actual structures. Here, we demonstrate that a hierarchical approach for topological interlocking, inspired by biological systems, overcomes these limitations and provides a path toward optimized mechanical performance. We consider beam-like topologically interlocked structures that present a sinusoidal surface morphology with controllable amplitude and wavelength and examine the properties of the structures using numerical simulations. The results show that the presence of surface morphologies increases the effective frictional strength of the interfaces and, if well-designed, enables us to reach the theoretical limit of the structural carrying capacity with realistic friction coefficients. Furthermore, we observe that the contribution of the surface morphology to the effective friction coefficient of the interface is well described by a criterion combining the surface curvature and surface gradient. Our study demonstrates the ability to architecture the surface morphology in beam-like topological interlocked structures to significantly enhance its structural performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源