论文标题
在运算符的关节数字半径和巴拉克空间的关节数值指数上
On joint numerical radius of operators and joint numerical index of a Banach space
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Generalizing the notion of numerical range and numerical radius of an operator on a Banach space, we introduce the notion of joint numerical range and joint numerical radius of tuple of operators on a Banach space. We study the convexity of the joint numerical range. We show that the joint numerical radius defines a norm if and only if the numerical radius defines a norm on the corresponding space. Then we prove that on a finite-dimensional Banach space, the joint numerical radius can be retrieved from the extreme points. Furthermore, we introduce a notion of joint numerical index of a Banach space. We explore the same for direct sum of Banach spaces. Applying these results, finally we compute the joint numerical index of some classical Banach spaces.