论文标题
$ f(\ mathbb {r},\ mathbb {t})$ f中的解耦解决方案的各向同性和复杂性分析$
Isotropization and Complexity Analysis of Decoupled Solutions in $f(\mathbb{R},\mathbb{T})$ Theory
论文作者
论文摘要
本文通过在$ f(\ mathbb {r},\ mathbb {t})$ gravity的上下文中,通过最小的重力解耦来为场方程制定一些新的精确解决方案。为此,我们考虑各向异性球形物质分布,并添加额外的来源来扩展现有解决方案。我们仅将转换应用于径向度量电位,从而导致两个不同的修改场方程组,每个方程与其父源相对应。最初的各向异性来源由第一组表示,我们考虑两种不同良好的解决方案来关闭该系统。另一方面,我们对其他来源施加约束,以使第二组可解决。首先,我们采用各向同性条件,该条件导致与解耦参数的特定值的各向同性系统。然后,我们使用总配置的零复杂性条件来获得其他解决方案。未知数是通过在高表面上平稳匹配内部和外部空间来确定的。通过使用紧凑型星的质量和半径为4U $ 4U 1820-30 $,可以分析获得溶液的物理生存能力和稳定性。得出的结论是,我们的两个扩展解决方案都符合耦合/解耦参数的考虑值的所有物理要求。
This paper formulates some new exact solutions to the field equations by means of minimal gravitational decoupling in the context of $f(\mathbb{R},\mathbb{T})$ gravity. For this purpose, we consider anisotropic spherical matter distribution and add an extra source to extend the existing solutions. We apply the transformation only on the radial metric potential that results in two different sets of the modified field equations, each of them corresponding to their parent source. The initial anisotropic source is represented by the first set, and we consider two different well-behaved solutions to close that system. On the other hand, we impose constraints on the additional source to make the second set solvable. We, firstly, employ the isotropization condition which leads to an isotropic system for a particular value of the decoupling parameter. We then use the condition of zero complexity of the total configuration to obtain the other solution. The unknowns are determined by smoothly matching the interior and exterior spacetimes at the hypersurface. The physical viability and stability of the obtained solutions is analyzed by using the mass and radius of a compact star $4U 1820-30$. It is concluded that both of our extended solutions meet all the physical requirements for considered values of the coupling/decoupling parameters.