论文标题
RT-1:用于实际控制的机器人变压器
RT-1: Robotics Transformer for Real-World Control at Scale
论文作者
论文摘要
通过将知识从大型,多样化的任务不合STASTIC数据集转移,现代的机器学习模型可以解决零射击或小型任务数据集的特定下游任务的高度性能。尽管该能力已在其他领域(例如计算机视觉,自然语言处理或语音识别)中得到了证明,但在机器人技术中仍有待证明,由于难以收集现实世界的机器人数据,因此模型的概括能力尤其重要。我们认为,这种通用机器人模型成功的关键之一是开放式的任务不足训练,再加上可以吸收所有多样化的机器人数据的大容量架构。在本文中,我们提出了一个称为Robotics Transformer的模型类,该类别具有有希望的可扩展模型属性。我们在对不同模型类别的研究中验证了我们的结论,以及它们基于执行真实世界任务的真实机器人的大规模数据收集的数据大小,模型大小和数据多样性的函数的能力。该项目的网站和视频可以在robotics-transformer1.github.io上找到。
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer1.github.io