论文标题

不可固化的对称网

Non-Invertible Symmetry Webs

论文作者

Bhardwaj, Lakshya, Bottini, Lea E., Schafer-Nameki, Sakura, Tiwari, Apoorv

论文摘要

到现在已经看到了较高维量子场理论(QFT)中的许多构造。在本文中,我们提供了一个在存在不可变形对称性的情况下测量0形式对称性的深入研究。我们分析的起点是一种具有$ G $ 0形式对称性的理论,我们提出了子符号的顺序部分测量值的描述。测量表实现了伴侣纸的theta对称缺陷[1]。通过此测量相关的对称结构网络将称为不可固化的对称网络。我们的公式与Fusion 2类直接接触,我们发现了许多有趣的结构,例如在此分类环境中对称性分数。完整的对称网络是针对多个组的$ g $得出的,我们建议扩展到更高的尺寸。该分析的亮点是针对具有正交量规组的3D纯仪表理论及其扩展到任意维度的完整分类对称网络,包括不可变形的对称性。

Non-invertible symmetries have by now seen numerous constructions in higher dimensional Quantum Field Theories (QFT). In this paper we provide an in depth study of gauging 0-form symmetries in the presence of non-invertible symmetries. The starting point of our analysis is a theory with $G$ 0-form symmetry, and we propose a description of sequential partial gaugings of sub-symmetries. The gauging implements the theta-symmetry defects of the companion paper [1]. The resulting network of symmetry structures related by this gauging will be called a non-invertible symmetry web. Our formulation makes direct contact with fusion 2-categories, and we uncover numerous interesting structures such as symmetry fractionalization in this categorical setting. The complete symmetry web is derived for several groups $G$, and we propose extensions to higher dimensions. The highlight of this analysis is the complete categorical symmetry web, including non-invertible symmetries, for 3d pure gauge theories with orthogonal gauge groups and its extension to arbitrary dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源