论文标题

可伸缩的铃铛不平等现象,用于任意元素局部维度和自我测试的图形状态

Scalable Bell inequalities for graph states of arbitrary prime local dimension and self-testing

论文作者

Santos, Rafael, Saha, Debashis, Baccari, Flavio, Augusiak, Remigiusz

论文摘要

贝尔非局部性 - 无法用经典手段来解释的量子相关性的存在 - 无疑是量子力学中最引人注目的特征之一。它在独立于设备的协议中的应用范围正在不断增长。许多相关的量子特征可以通过违反贝尔不平等的行为来推断,包括纠缠检测和量化,以及适用于任意粒子系统的状态认证。但是,多体系统的非局部相关性的完整表征是一个计算上的问题。即使将分析限制在特定的状态类别中,也没有裁定给定状态违反贝尔的不平等的一般方法。在这项工作中,我们提供了一般的铃铛不平等现象,这些不平等是由任何主要局部维度的图形状态最大程度地侵犯的。这些形成了一类广泛的多部分量子状态,这些状态在量子信息中具有许多应用,包括量子误差校正。我们通过分析确定它们的最大量子违规行为,这与贝尔不平等的设备无关应用相关。最后,我们表明这些不平等现象可用于自我测试多Qutrit图状态,例如众所周知的四Qutrit绝对最大纠缠的状态AME(4,3)。

Bell nonlocality -- the existence of quantum correlations that cannot be explained by classical means -- is certainly one of the most striking features of quantum mechanics. Its range of applications in device-independent protocols is constantly growing. Many relevant quantum features can be inferred from violations of Bell inequalities, including entanglement detection and quantification, and state certification applicable to systems of arbitrary number of particles. A complete characterisation of nonlocal correlations for many-body systems is, however, a computationally intractable problem. Even if one restricts the analysis to specific classes of states, no general method to tailor Bell inequalities to be violated by a given state is known. In this work we provide a general construction of Bell inequalities that are maximally violated by graph states of any prime local dimension. These form a broad class of multipartite quantum states that have many applications in quantum information, including quantum error correction. We analytically determine their maximal quantum violation, a number of high relevance for device-independent applications of Bell inequalities. Finally, we show that these inequalities can be used for self-testing of multi-qutrit graph states such as the well-known four-qutrit absolutely maximally entangled state AME(4,3).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源