论文标题

环形坐​​标:降低晶格的圆形坐标

Toroidal Coordinates: Decorrelating Circular Coordinates With Lattice Reduction

论文作者

Scoccola, Luis, Gakhar, Hitesh, Bush, Johnathan, Schonsheck, Nikolas, Rask, Tatum, Zhou, Ling, Perea, Jose A.

论文摘要

de Silva,Morozov和Vejdemo-Johansson的圆形坐标算法将数据集作为输入,以及代表数据中$ 1 $维孔的共同体学类别;输出是从数据到圆圈捕获该孔的地图,而在适当的意义上是最小能量。但是,当应用于几个共同体类别时,即使所选的共同体学类别是线性独立的,即使输出圆值图可以“几何相关”。在原始工作中显示的是,通过合适的整数线性组合可以获得较少的相关图,并通过检查选择线性组合。在本文中,我们确定了圆值图之间的形式几何相关性概念,该图在Riemannian歧管情况下,对应于Dirichlet形式,是源自Dirichlet Energy的双线性形式。我们描述了一个系统的程序,用于从一组线性独立的共同体学类别开始,在数据上构建低能圆环值的图。我们通过计算示例展示了我们的过程。我们的主要算法基于计算数理论的lenstra-lenstra-lovász算法。

The circular coordinates algorithm of de Silva, Morozov, and Vejdemo-Johansson takes as input a dataset together with a cohomology class representing a $1$-dimensional hole in the data; the output is a map from the data into the circle that captures this hole, and that is of minimum energy in a suitable sense. However, when applied to several cohomology classes, the output circle-valued maps can be "geometrically correlated" even if the chosen cohomology classes are linearly independent. It is shown in the original work that less correlated maps can be obtained with suitable integer linear combinations of the cohomology classes, with the linear combinations being chosen by inspection. In this paper, we identify a formal notion of geometric correlation between circle-valued maps which, in the Riemannian manifold case, corresponds to the Dirichlet form, a bilinear form derived from the Dirichlet energy. We describe a systematic procedure for constructing low energy torus-valued maps on data, starting from a set of linearly independent cohomology classes. We showcase our procedure with computational examples. Our main algorithm is based on the Lenstra--Lenstra--Lovász algorithm from computational number theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源