论文标题

部分可观测时空混沌系统的无模型预测

PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal Imputation

论文作者

Xu, Maxwell A., Moreno, Alexander, Nagesh, Supriya, Aydemir, V. Burak, Wetter, David W., Kumar, Santosh, Rehg, James M.

论文摘要

移动健康的承诺(MHealth)是能够使用可穿戴传感器在日常生活中高频监测参与者生理的能力,以实现时间临时的健康干预措施。但是,一个主要的挑战是经常缺少数据。尽管文献丰富,但现有的技术对于构成许多MHealth应用的脉动信号却无效,并且缺乏可用的数据集已阻碍了进步。我们用Pulseimpute解决了这一差距,这是第一个大规模的脉动信号归合挑战,其中包括现实的MHealth缺失模型,一组广泛的基线以及临床上与临床相关的下游任务。我们的基线模型包括一种基于变压器的新型体系结构,旨在利用脉动信号的结构。我们希望Punseimpute能够使ML社区能够应对这项重大而具有挑战性的任务。

The promise of Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions. However, a major challenge is frequent missing data. Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications, and a lack of available datasets has stymied progress. We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks. Our baseline models include a novel transformer-based architecture designed to exploit the structure of pulsative signals. We hope that PulseImpute will enable the ML community to tackle this significant and challenging task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源