论文标题

$ \ mathrm {out}(f_n)$的Abelian子组的自由组和中心化的外部自动形态的根

Roots of outer automorphisms of free groups and centralizers of abelian subgroups of $\mathrm{Out}(F_N)$

论文作者

Guerch, Yassine

论文摘要

令$ n \ geq 2 $,然后让$ \ mathrm {out}(f_n)$为nonabelian自由组的外部自动形态组,等级$ n $。令$ \ mathrm {ia} _n(\ mathbb {z}/3 \ mathbb {z})$为$ \ mathrm {out}(out}(f_n)$的有限索引子组,这是$ \ mathrm {out}(out}(f_n)$的自然动作的内核$ h_1(f_n,\ mathbb {z}/3 \ mathbb {z})$。我们表明,$ \ mathrm {ia} _n(\ Mathbb {z}/3 \ Mathbb {z})$是$ r $ -group,也就是说,对于每个$ ϕ,ψ\ in \ in \ in \ in \ mathrm {ia} _n(ia} _n(ia} _n(\ mathbb), \ mathbb {n}^*$,这样$ ϕ^k =ψ^k $,然后$ ϕ =ψ$。这回答了Handel和Mosher的问题。然后,我们使用以下事实:$ \ mathrm {ia} _n(\ Mathbb {z}/3 \ Mathbb {z})$是$ r $ - 组,以证明$ \ Mathrm {ia} _n(ia} _n(\ mathbb {z}/3 \ althbb {z}/3 \ mathb}的归一化量$ \ mathrm {ia} _n(\ mathbb {z}/3 \ mathbb {z})$等于其centurnizer。由于Feighn和Handel,我们最终给出了结果的替代证明,即$ \ mathrm {out}(f_n)$的元素的中心设备只有许多周期性的循环类别的最大循环子组的$ f_n $的最大循环子组实际上是Abelian。

Let $N \geq 2$ and let $\mathrm{Out}(F_N)$ be the outer automorphism group of a nonabelian free group of rank $N$. Let $\mathrm{IA}_N(\mathbb{Z}/3\mathbb{Z})$ be the finite index subgroup of $\mathrm{Out}(F_N)$ which is the kernel of the natural action of $\mathrm{Out}(F_N)$ on $H_1(F_N,\mathbb{Z}/3\mathbb{Z})$. We show that $\mathrm{IA}_N(\mathbb{Z}/3\mathbb{Z})$ is an $R$-group, that is, for every $ϕ,ψ\in \mathrm{IA}_N(\mathbb{Z}/3\mathbb{Z})$, if there exists $k \in \mathbb{N}^*$ such that $ϕ^k=ψ^k$, then $ϕ=ψ$. This answers a question of Handel and Mosher. We then use the fact that $\mathrm{IA}_N(\mathbb{Z}/3\mathbb{Z})$ is an $R$-group in order to prove that the normalizer in $\mathrm{IA}_N(\mathbb{Z}/3\mathbb{Z})$ of every abelian subgroup of $\mathrm{IA}_N(\mathbb{Z}/3\mathbb{Z})$ is equal to its centralizer. We finally give an alternative proof of a result, due to Feighn and Handel, that the centralizer of an element of $\mathrm{Out}(F_N)$ which has only finitely many periodic orbits of conjugacy classes of maximal cyclic subgroups of $F_N$ is virtually abelian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源