论文标题
在不同的采集条件下检测X射线中的骨骼病变
Detecting Bone Lesions in X-Ray Under Diverse Acquisition Conditions
论文作者
论文摘要
原发性骨肿瘤的诊断很具有挑战性,因为最初的抱怨通常是非特异性的。骨癌的早期发现对于有利的预后至关重要。顺便说一句,出于其他原因,可以在X光片上发现病变。但是,这些早期的迹象常常被错过。在这项工作中,我们提出了一种自动算法来检测常规X光片中的骨骼病变,以促进早期诊断。在这种X光片中检测病变具有挑战性:首先,骨癌的患病率很低。任何方法都必须显示高精度,以避免过度数量的错误警报。其次,由于不同的X射线机,技术人员和成像协议,在健康维护组织(HMO)或急诊部门(EDS)中拍摄的X光片(EDS)遭受了固有的多样性。这种多样性对任何自动分析方法构成了重大挑战。我们建议训练现成的对象检测算法,以检测X光片的病变。我们方法的新颖性源于专门的预处理阶段,该阶段直接解决了数据的多样性。预处理包括使用视觉变压器(VIT)的自我监督区域检测以及基于前景的直方图均衡,以增强相关区域的对比度。我们通过一项回顾性研究评估了我们的方法,该研究根据不同的收购方案分析了从2003年1月至2018年12月获得的X光片的骨肿瘤。我们的方法以1.5%的假阳性速率获得82.43%的灵敏度,并超过现有的预处理方法。对于病变检测,我们的方法达到82.5%的精度,IOU为0.69。提出的预处理方法使得能够有效应对HMOS和EDS中获得的X光片的固有多样性。
The diagnosis of primary bone tumors is challenging, as the initial complaints are often non-specific. Early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. In this work, we propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging: first, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians and imaging protocols. This diversity poses a major challenge to any automatic analysis method. We propose to train an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only. We evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69. The proposed preprocessing method enables to effectively cope with the inherent diversity of radiographs acquired in HMOs and EDs.