论文标题
单帧激光二极管光声成像:denoising和重建
Single Frame Laser Diode Photoacoustic Imaging: Denoising and Reconstruction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A new development in photoacoustic (PA) imaging has been the use of compact, portable and low-cost laser diodes (LDs), but LD-based PA imaging suffers from low signal intensity recorded by the conventional transducers. A common method to improve signal strength is temporal averaging, which reduces frame rate and increases laser exposure to patients. To tackle this problem, we propose a deep learning method that will denoise the PA images before beamforming with a very few frames, even one. We also present a deep learning method to automatically reconstruct point sources from noisy pre-beamformed data. Finally, we employ a strategy of combined denoising and reconstruction, which can supplement the reconstruction algorithm for very low signal-to-noise ratio inputs.