论文标题
部分可观测时空混沌系统的无模型预测
Role of the molecular environment in quenching the irradiation-driven fragmentation of Fe(CO)$_5$: a reactive molecular dynamics study
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Irradiation-driven fragmentation and chemical transformations of molecular systems play a key role in nanofabrication processes where organometallic compounds break up due to the irradiation with focused particle beams. In this study, reactive molecular dynamics simulations have been performed to analyze the role of the molecular environment on the irradiation-induced fragmentation of molecular systems. As a case study, we consider the dissociative ionization of iron pentacarbonyl, Fe(CO)$_5$, a widely used precursor molecule for focused electron beam-induced deposition. In connection to recent experiments, the irradiation-induced fragmentation dynamics of an isolated Fe(CO)$_5^+$ molecule is studied and compared with that of a Fe(CO)$_5^+$ molecule embedded into an argon cluster. The appearance energies of different fragments of an isolated Fe(CO)$_5^+$ agree with the recent experimental data. For Fe(CO)$_5^+$ embedded into an argon cluster, the simulations reproduce the experimentally observed suppression of Fe(CO)$_5^+$ fragmentation and provide an atomistic-level understanding of this effect. Understanding irradiation-driven fragmentation patterns for molecular systems in environments facilitates the advancement of atomistic models of irradiation-induced chemistry processes involving complex molecular systems.