论文标题
在Zeeman诱导的二阶拓扑绝缘子中实现三维量子厅效应
Realization of a three-dimensional quantum Hall effect in a Zeeman-induced second order topological insulator on a torus
论文作者
论文摘要
我们提出了在三个维度(3D)中二阶绝缘子(SOTI)中量子大厅效应(QHE)的实现,该效果是由铰链状态在圆环表面上介导的。它是由材料结构,Zeeman效应和表面曲率的非平凡相互作用产生的。与常规的2D和3D-QHE相反,我们表明3D-SOTI QHE不受施加磁场的轨道效应的影响,并且仅在Zeeman项的存在下存在,例如诱导的,例如。通过磁掺杂。为了解释3D-SOTI QHE,我们分析了3D-SOTI的边界电荷,并建立了其对通过圆环孔的Aharonov-bohm通量螺纹的普遍依赖性。利用边界电荷与霍尔电导之间的基本关系,我们证明了后者的普遍量化及其针对随机疾病电位的稳定性和圆环表面的连续变形。
We propose a realization of a quantum Hall effect (QHE) in a second-order topological insulator (SOTI) in three dimensions (3D), which is mediated by hinge states on a torus surface. It results from the nontrivial interplay of the material structure, Zeeman effect, and the surface curvature. In contrast to the conventional 2D- and 3D-QHE, we show that the 3D-SOTI QHE is not affected by orbital effects of the applied magnetic field and exists in the presence of a Zeeman term only, induced e.g. by magnetic doping. To explain the 3D-SOTI QHE, we analyze the boundary charge for a 3D-SOTI and establish its universal dependence on the Aharonov-Bohm flux threading through the torus hole. Exploiting the fundamental relation between the boundary charge and the Hall conductance, we demonstrate the universal quantization of the latter, as well as its stability against random disorder potentials and continuous deformations of the torus surface.