论文标题
不可逆转二元性缺陷的“动物学”:类$ \ Mathcal {s} $的视图
"Zoology" of non-invertible duality defects: the view from class $\mathcal{S}$
论文作者
论文摘要
我们通过研究具有较大双重性组的理论,研究了$ \ Mathcal {n} = 4 $ su(n)Sym中存在的非偶性双重性缺陷的概括。我们专注于4D $ \ MATHCAL {n} = 2 $类$ \ Mathcal {S} $的理论,该$由6d $ \ Mathcal {n} =(2,2,2,2,2,2,2,2,2,0)$理论$ a_ {n-1} $ type type of Riemann Surface $σ_g$上没有pulteruter。我们讨论了它们的不可变性二元性对称性,并提供了两种计算其融合代数的方法:使用离散的拓扑操作或5D TQFT描述。我们还介绍了不可不可变的对称对称性的“等级”的概念,并显示了如何(几乎)以很少的计算努力(几乎)完全修复融合代数。
We study generalizations of the non-invertible duality defects present in $\mathcal{N} = 4$ SU(N) SYM by studying theories with larger duality groups. We focus on 4d $\mathcal{N} = 2$ theories of class $\mathcal{S}$ obtained by the dimensional reduction of the 6d $\mathcal{N} = (2, 0)$ theory of $A_{N-1}$ type on a Riemann surface $Σ_g$ without punctures. We discuss their non-invertible duality symmetries and provide two ways to compute their fusion algebra: either using discrete topological manipulations or a 5d TQFT description. We also introduce the concept of "rank" of a non-invertible duality symmetry and show how it can be used to (almost) completely fix the fusion algebra with little computational effort.