论文标题
通过整数点通过其值来表征规范形式
Characterization of norm forms via their values at integer points
论文作者
论文摘要
使用均匀的动力学方法,我们获得了在整数点处具有离散值集的形式的完整描述,而不是在有理数上非平淡无奇地表示零。结果,我们获得了一类非纯净真实形式的一般类别,菜和swinnerton-dyer猜想的自然概括失败了。
Using homogeneous dynamical approach, we obtain a complete description of the forms with discrete set of values at the integer points and not representing zero non-trivially over the rational numbers. As a consequence, we obtain a general class of non-purely real forms for which the natural generalization of Cassels and Swinnerton-Dyer conjecture fails.