论文标题
M理论中的渐近弱重力猜想
The Asymptotic Weak Gravity Conjecture in M-theory
论文作者
论文摘要
塔弱重力猜想可以在一个一致的量子重力理论的电荷晶格中预测沿每个射线的无限超级超级状态。我们在M-Beary对Calabi-YAU-YAU中的五维压缩中表明,对于耦合极限较弱的量规组,这一主张是3倍。我们首先表征了可能的弱耦合极限,该界限是基于Mheory Compactifation的Kähler模量空间中无限距离限制的早期分类。我们发现,弱耦合量规组与通用纤维中包含的紧凑型空间或在其模量空间中有限距离退化的纤维中的曲线相关联。这些始终将解释为kaluza-klein或双重框架或双重扰动杂音量规组的一部分,与新兴的弦线猜想一致。利用唐纳森(Donaldson)之间的联系 - 托马斯(Thomas)不变式和noethz理论,然后我们表明,相关电荷晶格中的每个射线要么支持BPS状态的塔或非BPS状态的塔,而且证明这些射线至少满足了超级超级性条件,至少在弱耦合方案中。
The tower Weak Gravity Conjecture predicts infinitely many super-extremal states along every ray in the charge lattice of a consistent quantum gravity theory. We show this far-reaching claim in five-dimensional compactifications of M-theory on Calabi--Yau 3-folds for gauge groups with a weak coupling limit. We first characterize the possible weak coupling limits, building on an earlier classification of infinite distance limits in the Kähler moduli space of M-theory compactifications. We find that weakly coupled gauge groups are associated to curves on the compactification space contained in generic fibers or in fibers degenerating at finite distance in their moduli space. These always admit an interpretation as a Kaluza--Klein or winding U$(1)$ in a dual frame or as part of a dual perturbative heterotic gauge group, in agreement with the Emergent String Conjecture. Using the connection between Donaldson--Thomas invariants and Noether--Lefschetz theory, we then show that every ray in the associated charge lattice either supports a tower of BPS states or of non-BPS states, and prove that these satisfy the super-extremality condition, at least in the weak coupling regime.