论文标题

干扰问题的动态方法

Dynamical approach to the jamming problem

论文作者

Wilken, Sam, Guo, Ashley Z., Levine, Dov, Chaikin, Paul M.

论文摘要

一个简单的动力学模型,即偏见的随机组织BRO,似乎会产生称为随机关闭填料(RCP)的配置,它是Bro在Dimension $ d = 3 $中的最密集的关键点。我们猜想BRO同样在任何维度上产生RCP。如果是这样,则RCP在$ d = 1-2 $中不存在(其中BRO动态导致结晶顺序)。在$ d = 3-5 $中,BRO分别产生等静力配置和先前估计的RCP体积分数0.64、0.46和0.30。对于所有研究的维度($ d = 2-5 $),我们发现BRO通过测量与稳态活性和远距离密度波动相关的关键指数属于动力学相变的Manna通用类别。此外,在$ d \ ge 4 $时,BRO的近接触分布(差距)显示了与RCP无限维理论处理一致的行为。 BRO的最密集构型与随机关闭填料的关联意味着RCP的上限维度与Manna类$ d_ {uc} = 4 $一致。

A simple dynamical model, Biased Random Organization, BRO, appears to produce configurations known as Random Close Packing (RCP) as BRO's densest critical point in dimension $d=3$. We conjecture that BRO likewise produces RCP in any dimension; if so, then RCP does not exist in $d=1-2$ (where BRO dynamics lead to crystalline order). In $d=3-5$, BRO produces isostatic configurations and previously estimated RCP volume fractions 0.64, 0.46, and 0.30, respectively. For all investigated dimensions ($d=2-5$), we find that BRO belongs to the Manna universality class of dynamical phase transitions by measuring critical exponents associated with the steady-state activity and the long-range density fluctuations. Additionally, BRO's distribution of near-contacts (gaps) displays behavior consistent with the infinite-dimensional theoretical treatment of RCP when $d \ge 4$. The association of BRO's densest critical configurations with Random Close Packing implies that RCP's upper-critical dimension is consistent with the Manna class $d_{uc} = 4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源