论文标题

seqdiffuseq:带编码器二次变压器的文本扩散

SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers

论文作者

Yuan, Hongyi, Yuan, Zheng, Tan, Chuanqi, Huang, Fei, Huang, Songfang

论文摘要

扩散模型是一种新的生成建模范式,在图像,音频和视频生成方面取得了巨大的成功。但是,考虑到文本的离散分类性质,将连续扩散模型扩展到自然语言并不是微不足道的,并且对文本扩散模型进行了较少的研究。顺序到序列文本生成是必不可少的自然语言处理主题之一。在这项工作中,我们应用扩散模型来接近顺序到序列文本生成,并探索扩散模型的优势生成性能是否可以转移到自然语言领域。我们提出了Seqdiffuseq,这是一种用于序列到序列生成的文本扩散模型。 seqdiffuseq使用编码器 - 码头变压器体系结构来建模DeNoising函数。为了提高发电质量,seqdiffuseq结合了自我调节技术和新提出的自适应噪声时间表技术。自适应噪声时间表很难在时间步骤中均匀分布,并考虑以不同位置顺序的令牌的独家噪声时间表。实验结果说明了在文本质量和推理时间方面的顺序到序列生成的良好性能。

Diffusion model, a new generative modelling paradigm, has achieved great success in image, audio, and video generation. However, considering the discrete categorical nature of text, it is not trivial to extend continuous diffusion models to natural language, and text diffusion models are less studied. Sequence-to-sequence text generation is one of the essential natural language processing topics. In this work, we apply diffusion models to approach sequence-to-sequence text generation, and explore whether the superiority generation performance of diffusion model can transfer to natural language domain. We propose SeqDiffuSeq, a text diffusion model for sequence-to-sequence generation. SeqDiffuSeq uses an encoder-decoder Transformers architecture to model denoising function. In order to improve generation quality, SeqDiffuSeq combines the self-conditioning technique and a newly proposed adaptive noise schedule technique. The adaptive noise schedule has the difficulty of denoising evenly distributed across time steps, and considers exclusive noise schedules for tokens at different positional order. Experiment results illustrate the good performance on sequence-to-sequence generation in terms of text quality and inference time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源