论文标题

在后线性框架中,有效的一体形式主义用于前阶辐射效应

Effective-one-body formalism for leading-order radiative effects in the post-linear framework

论文作者

Rajeev, Karthik, Shankaranarayanan, S.

论文摘要

近年来,在使用后诺科夫斯基(Minkowskian)重力动力学的方法计算保守和耗散散射的计算中取得了重大进展。但是,为了准确对未结合轨道进行建模,需要对Minkowski后结果进行适当的有效一体(EOB)重新召集,该结果也可以解释耗散动力学。作为朝这个方向迈出的一步,我们在这里考虑了此问题的电磁类似物。我们表明,运动的六参数方程将有效的一体动力学封装,用于在耦合常数中适合三阶的电磁散射问题。这六个参数中有三个描述了动力学的保守部分,而其余部分则对应于辐射反应效应。在这里,我们表明,只有两个与辐射反应相关的参数在所需的顺序上很重要,这使得我们形式主义中的有效数量参数为五。我们通过将EOB散射与[Saketh等人,Phys.Rev.Res计算的原始两体散射相匹配,计算这五个参数的显式形式。 4(2022)1]。有趣的是,我们的形式主义导致了对亚领先的角动量损失的猜想,对于不存在精确的计算。此外,我们证明了使用我们的方法计算的界限可观察物与使用未结合的分析延续技术计算的界限完全一致。最后,我们定性地讨论形式主义对重力的扩展。

In recent years, significant progress has been made in the computation of conservative and dissipative scattering observables using the post-Minkowskian approach to gravitational dynamics. However, for accurate modeling of unbound orbits, an appropriate effective-one-body (EOB) resummation of the post-Minkowski results that also accounts for dissipative dynamics is desirable. As a step in this direction, we consider the electromagnetic analog of this problem here. We show that a six-parameter equation of motion encapsulates the effective-one-body dynamics for the electromagnetic scattering problem appropriate to third-order in the coupling constant. Three of these six parameters describe the conservative part of the dynamics, while the rest correspond to the radiation-reaction effects. Here we show that only two radiation-reaction-related parameters are important at the desired order, making the effective number of parameters in our formalism to be five. We compute the explicit forms of these five parameters by matching EOB scattering observables to that of the original two-body ones computed by [Saketh et al., Phys.Rev.Res. 4 (2022) 1]. Interestingly, our formalism leads to a conjecture for the sub-leading angular momentum loss, for which no precise computations exist. In addition, we demonstrate that the bound-orbit observables computed using our method are in perfect agreement with those calculated using unbound-to-bound analytical continuation techniques. Lastly, we qualitatively discuss the extension of our formalism to gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源