论文标题

贝叶斯网络的反转

Inversion of Bayesian Networks

论文作者

van Oostrum, Jesse, van Hintum, Peter, Ay, Nihat

论文摘要

变分自动编码器和Helmholtz机器使用识别网络(编码器)来近似生成模型的后验分布(解码器)。在本文中,我们研究了识别网络的必要特性,以便它可以准确地对真实的后验分布进行建模。这些结果是在概率图形建模 /贝叶斯网络的一般环境中得出的,该网络代表一组有条件的独立语句。我们在D分隔的方面得出了全球条件,也可以使识别网络具有所需质量的局部条件。事实证明,对于当地条件,财产完美(对于每个节点,所有父母都会加入)都起着重要作用。

Variational autoencoders and Helmholtz machines use a recognition network (encoder) to approximate the posterior distribution of a generative model (decoder). In this paper we study the necessary and sufficient properties of a recognition network so that it can model the true posterior distribution exactly. These results are derived in the general context of probabilistic graphical modelling / Bayesian networks, for which the network represents a set of conditional independence statements. We derive both global conditions, in terms of d-separation, and local conditions for the recognition network to have the desired qualities. It turns out that for the local conditions the property perfectness (for every node, all parents are joined) plays an important role.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源