论文标题
特征向量重叠的波动和Wigner矩阵的浆果猜想
Fluctuations of eigenvector overlaps and the Berry conjecture for Wigner matrices
论文作者
论文摘要
我们证明,$ n \ times n $ wigner矩阵的一般确定性矩阵和特征向量的二次形式(重叠)的任何有限收集都具有关节高斯波动。这可以看作是浆果随机波的随机基质类似物。
We prove that any finite collection of quadratic forms (overlaps) of general deterministic matrices and eigenvectors of an $N\times N$ Wigner matrix has joint Gaussian fluctuations. This can be viewed as the random matrix analogue of the Berry random wave conjecture.