论文标题

使用力矩匹配,将正面过程模型嵌入到对数正常的贝叶斯状态空间框架中

Embedding Positive Process Models into Lognormal Bayesian State Space Frameworks using Moment Matching

论文作者

Smith, John W., Johnson, Leah R., Thomas, R. Quinn

论文摘要

在生态学中,根据系统的物理约束,过程通常是界定的。一个常见的例子是阳性限制,它适用于诸如持续时间,人口规模和系统商品的总库存等现象。在本文中,我们提出了一种新的方法,该方法使用基于力矩匹配的方法将这些动力学系统嵌入对数正态空间模型中。我们的方法强制执行阳性约束,允许嵌入任意平均进化和方差结构,并具有封闭形式的马尔可夫过渡密度,从而使拟合技术更加灵活。我们讨论了两个现有的日志态状态空间模型,并研究它们与此处介绍的方法有何不同。我们使用180个合成数据集比较模型错误指定下的预测性能,并评估我们方法和现有方法之间精确参数的估计性。我们发现我们的模型在错误的指定下很好,并且解决观察方差既有助于提高过程差异的估计,又有助于提高预测性能。为了测试我们在一个困难问题上的方法,我们通过嵌入基于过程的生态系统模型来比较两个对数正态状态空间模型在151天范围内预测叶子面积指数的预测性能。我们发现,匹配模型的表现要比其竞争对手更好,并且更适合长期预测范围。总体而言,我们的研究有助于告知从业者,当使用模型复杂系统预测样品时,嵌入明智的动态的重要性。

In ecology it is common for processes to be bounded based on physical constraints of the system. One common example is the positivity constraint, which applies to phenomena such as duration times, population sizes, and total stock of a system's commodity. In this paper, we propose a novel method for embedding these dynamical systems into a lognormal state space model using an approach based on moment matching. Our method enforces the positivity constraint, allows for embedding of arbitrary mean evolution and variance structure, and has a closed-form Markov transition density which allows for more flexibility in fitting techniques. We discuss two existing lognormal state space models, and examine how they differ from the method presented here. We use 180 synthetic datasets to compare the forecasting performance under model misspecification and assess estimability of precision parameters between our method and existing methods. We find that our models well under misspecification, and that fixing the observation variance both helps to improve estimation of the process variance and improves forecast performance. To test our method on a difficult problem, we compare the predictive performance of two lognormal state space models in predicting Leaf Area Index over a 151 day horizon by embedding a process-based ecosystem model. We find that our moment matching model performs better than its competitor, and is better suited for long predictive horizons. Overall, our study helps to inform practitioners about the importance of embedding sensible dynamics when using models complex systems to predict out of sample.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源