论文标题
茉莉花:阿拉伯GPT模型,用于几次学习
JASMINE: Arabic GPT Models for Few-Shot Learning
论文作者
论文摘要
关于生成预处理(GPT)的奖学金仍然是敏锐的中心,在我们对整个自回归模型类别的理解中留下了严重的差距。例如,我们对这些模型的潜力及其在多种语言和文化环境中的社会影响知之甚少。我们通过引入茉莉花来减轻阿拉伯语的这个问题,这些语言是多种语言和言语品种,人口超过4亿。茉莉花是一套强大的阿拉伯自回旋变压器语言模型,规模在3亿-67亿次的参数之间,在大型且多样化的数据集(约235 GB的文本)上预测的参数。我们还仔细设计和发布了一个全面的基准,用于对阿拉伯语自动回归模型的自动化和人类评估,并涵盖潜在的社会偏见,危害和毒性。使用我们的新基准测试,我们在本质上以及在各种NLP任务上进行了几次学习,对茉莉花进行了广泛的表现。我们的目标是与感兴趣的研究人员负责任地发布我们的模型和评估基准,以及与他们进行实验的代码。
Scholarship on generative pretraining (GPT) remains acutely Anglocentric, leaving serious gaps in our understanding of the whole class of autoregressive models. For example, we have little knowledge about the potential of these models and their societal impacts in diverse linguistic and cultural settings. We alleviate this issue for Arabic, a wide collection of languages and dialectal varieties with more than 400 million population, by introducing JASMINE. JASMINE is a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-6.7 billion parameters pretrained on a large and diverse dataset (~ 235 GB of text). We also carefully design and release a comprehensive benchmark for both automated and human evaluation of Arabic autoregressive models, with coverage of potential social biases, harms, and toxicity. Using our novel benchmark, we evaluate JASMINE extensively showing powerful performance intrinsically as well as in few-shot learning on a wide range of NLP tasks. We aim to responsibly release our models and evaluation benchmark with interested researchers, along with code for experimenting with them.